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1 Derivation of Biot-Savart Law

Figure 1:

Biot-Savart law, like Ampere’s law was experimentally determined in around
1820. This is the cumulative work of Ampere, Oersted, Biot, and Savart. Now,
we have the mathematical tool to derive this law from Ampere’s law and Gauss’s
law.

From Gauss’ law and Ampere’s law, we have derived that

A(r) =
µ

4π

˚
V

J(r′)

R
dV ′ (1.1)

When the current element is small, and is carried by a wire of cross sectional
area ∆a as shown in Figure 1, we can approximate the integrand as

J(r′)dV ′ ≈ J(r′)∆V ′ = (∆a)∆l︸ ︷︷ ︸
∆V

l̂I/∆a︸ ︷︷ ︸
J(r′)

(1.2)

In the above, ∆V = (∆a)∆l and l̂I/∆a = J(r′) since J has the unit of

amperes/m2. Here, l̂ is a unit vector pointing in the direction of the current
flow. Hence, we can let

J(r′)dV ′ ≈ I∆l (1.3)

where the vector ∆l = ∆ll̂. Therefore, the incremental vector potential due to
an incremental current is

∆A(r) ≈ µ

4π

(
J(r′)∆V ′

R

)
=

µ

4π

I∆l′

R
(1.4)
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Since B = ∇×A, we derive that the incremental B flux is

∆B = ∇×∆A(r) ∼=
µI

4π
∇× ∆l′

R
=
−µI
4π

∆l′ ×∇ 1

R
(1.5)

where we have made use of the fact that ∇× af(r) = −a×∇f(r) when a is a
constant vector. The above can be simplified further by making use of the fact
that

∇ 1

R
= − 1

R2
R̂ (1.6)

where R̂ is a unit vector pointing in the r−r′ direction. We have also made use of
the fact that R =

√
(x− x′)2 + (y − y′)2 + (z − z′)2. Consequently, assuming

that the incremental length becomes very small, or ∆l → dl, we have, after
using (1.6) in (1.5), that

dB =
µI

4π
dl′ × 1

R2
R̂ (1.7)

=
µIdl′ × R̂

4πR2
(1.8)

Since B = µH, we have

dH =
Idl′ × R̂

4πR2
(1.9)

or

H(r) =

ˆ
I(r′)dl′ × R̂

4πR2
(1.10)

which is Biot-Savart law

2 Boundary Conditions–Conductive Media Case

Figure 2:
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From the current continuity equation, one gets

∇ · J = −∂%
∂t

(2.1)

If the right-hand side is everywhere finite, it will not induce a jump discon-
tinuity in the current. Moreover, it is zero for static case. Hence, just like the
Gauss’s law case, the above implies that the normal component of the current
Jn is continuous, or that J1n = J2n. In other words,

n̂ · (J2 − J1) = 0 (2.2)

Hence, using J = σE, we have

σ2E2n − σ1E1n = 0 (2.3)

But Gauss’s law implies the boundary condition that

ε2E2n − ε1E1n = %s (2.4)

Hence, surface charge density or charge accumulation is necessary, unless σ2/σ1 =
ε2/ε1.

2.1 Electric Field Inside a Conductor

The electric field inside a perfect conductor has to be zero. If medium 1 is a
perfect conductor, then σ → ∞ but J1 = σE1. An infinitesimal small E1 will
give rise to an infinite current J1. To avoid this ludicrous situation, thus E1 = 0.
This implies that D1 = 0 as well.

Figure 3:
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Since tangential E is continuous, from Faraday’s law, it is still true that

E2t = E1t = 0 (2.5)

But since

n̂ · (D2 −D1) = %s (2.6)

and that D1 = 0, then

n̂ ·D2 = %s (2.7)

In other words, normal D2 6= 0, tangential E2 = 0. The sketch of the electric
field in the vicinity of a perfect conducting surface is shown in Figure 3.

The above argument for zero electric field inside a perfect conductor is true
for electrodynamic problems. However, one does not need the above argument
regarding the shielding of the static electric field from a conducting region. In
the situation of the two conducting objects example below, as long as the electric
fields are non-zero in the objects, currents will keep flowing. They flow until the
charges in the two objects orient themselves so that electric current cannot flow
anymore. This happens when the charges produce internal fields that cancel
each other giving rise to zero field inside the two objects. Faraday’s law still
applies which means that tangental E field has to be continuous. Therefore, the
boundary condition that the fields have to be normal to the conducting object
surface is still true for elecrostatics. A sketch of the electric field between two
conducting spheres is show in Figure 4.

Figure 4:
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2.2 Magnetic Field Inside a Conductor

We have seen that for a finite conductor, as long as σ 6= 0, the charges will
re-orient themselves until the electric field is expelled from the conductor; oth-
erwise, the current will keep flowing. But there are no magnetic charges nor
magnetic conductors in this world. So this physical phenomenon does not hap-
pen for magnetic field: in other words, magnetic field cannot be expelled from
an electric conductor. However, a magnetic field is expelled from a perfect
conductor or a superconductor. You can only fully understand this physical
phenomenon if we study Maxwell’s equations in their full glory or in their time-
varying form.

In a perfect conductor where σ → ∞, it is unstable for the magnetic field
B to be nonzero. As time varying magnetic field gives rise to an electric field
by the time-varying form of Faraday’s law, a small time variation of the B field
will give rise to infinite current flow in a perfect conductor. Therefore to avoid
this ludicrous situation, and to be stable, B = 0 in a perfect conductor or a
superconductor.

So if medium 1 is a perfect electric conductor, then B1 = H1 = 0. The
boundary conditions from Ampere’s law and Gauss’ law for magnetic flux give
rise to

n̂×H2 = Js (2.8)

which is the jump condition for the magnetic field. The magnetic flux B is
expelled from the perfect conductor, and there is no normal component of the
B field as there cannot be magnetic charges. Therefore, the boundary condition
becomes

n̂ ·B2 = 0 (2.9)

The B field in the vicinity of a conductor surface is as shown in Figure 5.
When a superconductor cube is placed next to a static magnetic field near

a permanent magnet, eddy current will be induced on the superconductor. The
eddy current will expel the static magnetic field from the permanent magnet,
or it will produce a magnetic dipole on the superconducting cube that repels
the static magnetic field. This causes the superconducting cube to levitate on
the static magnetic field.
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Figure 5:

3 Instantaneous Poynting’s Theorem

Before we proceed further with studying energy and power, it is habitual to add
fictitious magnetic current M and fictitious magnetic charge %m to Maxwell’s
equations to make them mathematically symmetrical. To this end, we have

∇×E = −∂B
∂t
−M (3.1)

∇×H =
∂D

∂t
+ J (3.2)

∇ ·D = % (3.3)

∇ ·B = %m (3.4)

Consider the first two of Maxwell’s equations where fictitious magnetic cur-
rent is included and that the medium is isotropic such that B = µH and D = εE.
Next, we need to consider only the first two equations since in electrodynam-
ics, by invoking charge conservation, the third and the fourth equations are
derivable from the first two. They are

∇×E = −∂B
∂t
−Mi = −µ∂H

∂t
−Mi (3.5)

∇×H =
∂D

∂t
+ J = ε

∂E

∂t
+ Ji + σE (3.6)

where Mi and Ji are impressed current sources. They are sources that are
impressed into the system, and they cannot be changed by their interaction
with the environment.

Also, for a conductive medium, a conduction current or induced current flows
in addition to impressed current. Here, J = σE is the induced current source.
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Moreover, J = σE is similar to ohm’s law. We can show from (3.5) and (3.6)
that

H · ∇ ×E = −µH · ∂H
∂t
−H ·Mi (3.7)

E · ∇ ×H = εE · ∂E
∂t

+ E · Ji + σE ·E (3.8)

Using the identity, which is the same as the product rule for derivatives, we
have1

∇ · (E×H) = H · (∇×E)−E · (∇×H) (3.9)

Therefore, from (3.7), (3.8), and (3.9) we have

∇ · (E×H) = −
(
µH · ∂H

∂t
+ εE · ∂E

∂t
+ σE ·E + H ·Mi + E · Ji

)
(3.10)

The physical meaning of the above is more lucid if we first consider σ = 0,
and Mi = Ji = 0, or the absence of conductive loss and the impressed current
sources. Then the above becomes

∇ · (E×H) = −
(
µH · ∂H

∂t
+ εE · ∂E

∂t

)
(3.11)

Rewriting each term on the right-hand side of the above, we have

µH · ∂H
∂t

=
1

2
µ
∂

∂t
H ·H =

∂

∂t

(
1

2
µ|H|2

)
=

∂

∂t
Wm (3.12)

εE · ∂E
∂t

=
1

2
ε
∂

∂t
E ·E =

∂

∂t

(
1

2
ε|E|2

)
=

∂

∂t
We (3.13)

Then (3.11) becomes

∇ · (E×H) = − ∂

∂t
(Wm +We) (3.14)

where

Wm =
1

2
µ|H|2, We =

1

2
ε|E|2 (3.15)

Equation (3.14) is reminiscent of the current continuity equation, namely,

∇ · J = −∂%
∂t

(3.16)

which is a statement of charge conservation. In other words, time variation of
current density at a point is due to charge density flow into or out of the point.

1The identity that a · (b× c) = c · (a× b) = b · (c× a) is useful for the derivation.
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Hence, E ×H has the meaning of power density, and Wm and We are the
energy density stored in the magnetic field and electric field, respectively. In
fact, one can show that E×H has the unit of V m−1 times A m−1 which is W
m−2, where V is volt, A is ampere, and W is watt, which is joule s−1. Hence,
it has the unit of power density.

Similarly, Wm = 1
2µ|H|

2 where µ has unit of H m−1. Hence, Wm has the
unit of H m−1 times A2 m−2 = J m−3, where H is henry, A is ampere, and J
is joule. Therefore, it has the unit of energy density. We can also ascertain the
unit of 1

2µ|H|
2 easily by noticing that the energy stored in an inductor is 1

2LI
2

which is in terms of joules, and is due to henry times A2.
Also We = 1

2ε|E|
2 where ε has the unit of F m−1. Hence, We has the unit

of F m−1 times V2 m−2 = J m−3 where F is farad, V is voltage, and J is joule,
which is energy density again. We can also ascertain the unit of 1

2ε|E|
2 easily

by noticing that the energy stored in a capacitor is 1
2CV

2 which has the unit of
joules, and is due to farad times V2.

The vector quantity

Sp = E×H (3.17)

is called the Poynting’s vector, and (3.14) becomes

∇ · Sp = − ∂

∂t
Wt (3.18)

where Wt = We + Wm is the total energy density stored. The above is similar
to the current continuity equation mentioned above. Analogous to that current
density is charge density flow, power density is energy density flow.

Now, if we let σ 6= 0, then the term to be included is then σE · E = σ|E|2
which has the unit of S m−1 times V2 m−2, or W m−3 where S is siemens. We

gather this unit by noticing that 1
2
V 2

R is the power dissipated in a resistor of R
ohms with a unit of watts. The reciprocal unit of ohms, which used to be mhos
is now siemens. With σ 6= 0, (3.18) becomes

∇ · Sp = − ∂

∂t
Wt − σ|E|2 = − ∂

∂t
We − Pd (3.19)

Here, ∇·Sp has physical meaning of power density oozing out from a point, and
−Pd = −σ|E|2 has the physical meaning of power density dissipated (siphoned)
at a point by the conductive loss in the medium which is proportional to −σ|E|2.

Now if we set Ji and Mi to be nonzero, (3.19) is augmented by the last two
terms in (3.10), or

∇ · Sp = − ∂

∂t
Wt − Pd −H ·Mi −E · Ji (3.20)

The last two terms can be interpreted as the power density supplied by the
impressed currents Mi and Ji. Hence, (3.20) becomes

∇ · Sp = − ∂

∂t
Wt − Pd + Ps (3.21)
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where

Ps = −H ·Mi −E · Ji (3.22)

where Ps is the power supplied by the impressed current sources. These terms
are positive if H and Mi have opposite signs, or if E and Ji have opposite signs.
The last terms reminds us of what happens in a negative resistance device or
a battery. In a battery, positive charges move from a region of lower potential
to a region of higher potential (see Figure 6). The positive charges move from
one end of a battery to the other end of the battery. Hence, they are doing an
“uphill climb” due to chemical processes within the battery.

Figure 6:

In the above, one can easily work out that Ps has the unit of W m−3 which
is power supplied density. One can also choose to rewrite (3.21) in integral form
by integrating it over a volume V and invoking the divergence theorem yielding

ˆ
S

dS · Sp = − d

dt

ˆ
V

WtdV −
ˆ
V

PddV +

ˆ
V

PsdV (3.23)

The left-hand side is ˆ
S

dS · (E×H) (3.24)

which represents the power flowing out of the surface S.
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